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characteristics. This is a procedure simple enough to 
approximate timely estimates of the anthropogenic con-
tribution to the event probability. Furthermore, since real 
extremes do not have well-defined physical borders, scaling 
can help quantify uncertainty around attribution results due 
to uncertainty around the event definition. Results suggest 
that the sensitivity of attribution statements to spatial scale 
is similar across models and that the sensitivity of attribu-
tion statements to the model used is often greater than the 
sensitivity to a doubling or halving of the spatial scale of 
the event. The use of a range of spatial scales allows us to 
identify a nonlinear relationship between the spatial scale 
of the event studied and the attribution statement.

Keywords  Attribution · Extremes · C20C+ · AGCMs

1  Introduction

Event attribution literature has been populated by tar-
geted studies investigating the influence of human activity 
on the properties and probability of recent major weather 
events (e.g. Stott et  al. 2004; Dole et  al. 2011; Peterson 
et al. 2012, 2013; Herring et al. 2014, 2015). Each of these 
studies focused on one or a few extreme weather events 
which adversely impacted human health, infrastructure, 
or agriculture (or a combination of these), usually attract-
ing substantial attention from the public and media. How-
ever, attribution statements for these events as well as the 
nature of associated impacts, vary according to the spatial 
and temporal scales chosen to define them. These defini-
tions are often somewhat arbitrarily chosen. For example, 
in Stott et  al. (2004), who examined the 2003 European 
heatwave, there is a mismatch between the spatial scales for 
which the severest impacts were felt, and those defined in 
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their analyses—only roughly two-thirds of the area exam-
ined in their study was European land (the remaining area 
was over North Africa), and mortality was mostly a conse-
quence of a two-week heatwave in August mostly confined 
to western Europe (Robine et al. 2008), not a hot summer. 
As demonstrated by Angélil et  al. (2014b), the sensitivity 
of attribution statements to the spatial and temporal scales 
of the extreme event can be substantial (increasing as the 
spatial scale increases), however their study only tests sen-
sitivity to very large changes in the spatial scale: from 2 
×106  km2 to the resolution of the two models they used, 
being ∼22,500 and ∼40,000 km2 (∼1.5◦ and ∼2◦).

The endogenous variability of the atmosphere depends 
on the spatial scale (Hawkins and Sutton 2012) and this 
would be expected to translate into a dependence of event 
attribution calculations because of their sensitivity to the 
magnitude of endogenous variability (Bellprat and Doblas-
Reyes 2016). Angélil et al. (2014b) revealed the existence 
of this scale dependence in climate model simulations, but 
they did not determine the functional form of the relation-
ship. Here we expand on Angélil et  al. (2014b) by deter-
mining this functional relationship in a number of climate 
models examining the robustness of the relationship across 
those models, by calculating attribution statements for 
extremes occurring over a set of discretized spatial scales—
all at subcontinental domains. The range of spatial scales 
allows us to more precisely characterise the relationship 
between the spatial scale and attribution statement—a rela-
tionship that is potentially nonlinear. Results can enable 
us to, for example, scale previously published attribution 
statements such that they are relevant to extremes occur-
ring at slightly different spatial scales. A by-product of this 
sensitivity analyses are results showing the magnitudes of 
attribution statements across models. We therefore addi-
tionally explore reasons for differences in attribution state-
ments between models.

We use the probabilistic event attribution framework 
designed by Pall et  al. (2011), using large initial condi-
tion ensembles from four Atmosphere-only Global Climate 
Models (AGCMs). The large ensembles better resolve the 
statistics of the rare weather events we are interested in, 
and such ensemble sizes are feasible since AGCMs are less 
computationally expensive to run compared to their cou-
pled counterparts. Similar to Pall et al. (2011) who use the 
Fraction of Attributable Risk (FAR), we characterise the 
anthropogenic contribution to the chance of the extreme 
with the Probability Ratio (PR) which is given by ratio of 
the probability of exceeding an extreme threshold in model 
runs forced by natural and anthropogenic influences (ALL) 
to the probability of exceeding the same threshold in model 
runs forced by only natural influences (NAT). If the PR > 1, 
anthropogenic greenhouse-gas emissions have increased 
the chance of the event. If the PR < 1, they have decreased 

the chance of the event. Using this framework, we take a 
brute force approach by calculating attribution statements 
on a global scale for daily, 5-day, and monthly temperature 
and rainfall extremes occurring at seven different spatial 
scales over thousands of different locations (see Fig. 1).

The goal of this paper is to understand the dependence 
of event attribution conclusions on the spatial scale for sub-
continental domains. Some event attribution studies, for 
example Stott et al. (2004), have considered events occur-
ring over regions approaching continental scales (i.e. 4 mil-
lion km2 and larger). We do not consider these larger scales 
in this paper because our method of using fixed regions 
becomes more of an issue at larger scales, with the sample 
of regions being smaller and thus it being more difficult to 
distinguish between region-specific properties (for example 
if a region happens to contain a section of Arctic coast) and 
generic properties for that type of region (e.g. mid-latitude 
continental). Refinement of event attribution techniques to 
smaller scale events is identified as a major direction and 
challenge in the field (National Academies of Sciences 
2016) so continental-scale analyses might be expected to 
become less frequent in the future.

While there remain pressing questions on issues that 
challenge event attribution assessments, such as how 
multi-model ensembles can be best used to optimise key 
properties seen in observations (e.g. variability; dynami-
cal response to boundary conditions), this paper directly 
addresses a particular question, that being on the sensitivity 
of event attribution analyses to the definition of the event 
examined.

2 � Data

We use four AGCMs, each run under two forcing scenar-
ios. The first being a factual scenario forced with natural 
and anthropogenic influences (ALL) simulating weather 
that might have occurred under observed historical bound-
ary conditions. The second set of ensembles are run under 
a counterfactual “natural” scenario (NAT), in which emis-
sions from human activities had not interfered with the cli-
mate system.

The ALL scenario is forced with observed boundary 
conditions for greenhouse gases, tropospheric aerosols, vol-
canic aerosols, ozone concentrations, solar irradiance, sea 
surface temperatures (SST), sea ice coverage (SIC), and 
land cover. In the NAT scenario, greenhouse gases, tropo-
spheric aerosols and ozone were altered to estimate pre-
industrial levels, while ocean temperatures were cooled and 
sea ice coverage expanded according to an estimate based 
on output from the international CMIP5 climate model-
ling effort (http://portal.nersc.gov/c20c/input_data/C20C-
DandA_dSSTs_All-Hist-est1_Nat-Hist-CMIP5-est1.pdf). 
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The NAT SST variability is based on observed ocean sur-
face conditions, which preserves month-to-month and year-
to-year variability, such as the El  Niño-Southern Oscilla-
tion phenomenon (ENSO).

The AGCMs used are part of the C20C+ detection 
and attribution project (http://portal.nersc.gov/c20c/): the 
CAM5.1, MIROC5, HadGEM3-A-N216, and HadAM3P-
N96 AGCMs, run at resolutions of ∼1.4◦, ∼1◦, ∼0.5◦ and 
∼1.8◦ respectively. The area covered by grid cells varies 
with latitude, decreasing with increasing distance from 
the equator. In CAM5.1, prescribed SSTs up to 1982 are 
an adjusted version of the HadISST1 dataset (Rayner et al. 
2003), after which the NOAA-OI.v2 dataset is used (Hur-
rell et al. 2008). In HadAM3P-N96, SSTs were prescribed 
using NOAA-OI.v2. The HadGEM3-A-N216 (Christidis 
et  al. 2013) and MIROC5 (Shiogama et  al. 2013, 2014) 
prescribed monthly SST and SIC were taken from the 

HadISST1 dataset. Any differences between the AGCMs 
may be partially due to CAM5.1 and HadAM3P-N96 using 
prescribed aerosol burdens (black carbon, organic car-
bon, sulfate and sea salt), while MIROC5 and HadGEM3-
A-N216 simulate aerosol distributions from prescribed 
aerosol emissions. The MIROC5 and HadGEM3-A-
N216 experimental setups therefore allow for interactions 
between the simulated weather and atmospheric chemistry, 
while in CAM5.1 and HadAM3P-N96 the absence of this 
interaction may prevent the occurrence of feed-backs rel-
evant in the simulation of extremes, particularly hot events.

In HadGEM3-A-N216, all ensembles members have the 
same initial conditions but differences are generated using 
parameter perturbations and a stochastic kinetic energy 
backscatter scheme (Christidis et  al. 2013). In CAM5.1, 
MIROC5 and HadAM3P-N96, each ensemble member 
from each AGCM differs from the next only in its initial 

Fig. 1   The 1st (a) to 6th (f) spatial scales over which grid cell val-
ues are aggregated. Regions derived from the original WRAF regions 
(panel a and thick black lines in all panels), are demarcated by the 
thin black lines. The 7th and smallest spatial domain is not shown as 

it is the grid cell scale. The regions shown here were derived from a 
high resolution grid of the WRAF regions (1440 × 720), such that the 
smaller regions could be most accurately defined before remapping 
them to the resolution of the coarsest model for the analyses
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conditions. Each model run has been trimmed to cover 
the January 2008–December 2012 period. Daily means 
of two meter air temperature and precipitation are used 
in this analyses. Extremes are by definition rare, there-
fore in order to resolve the statistics of these events, we 
use the maximum number of available simulations from 
each AGCM. This consists of 100 ALL and NAT mem-
bers from CAM5.1, 60 ALL and 50 NAT counter-factual 
members from MIROC5, 15 ALL and NAT members from 
HadGEM3-A-N216, and 50 ALL and NAT members from 
HadAM3P-N96.

3 � Method

In order to better resolve the statistics of extreme events, all 
members and all years from each AGCM are pooled before 
any further calculations are made. All data are remapped to 
the coarsest model being HadAM3P-N96 using a first order 

conservative remapping procedure (Jones 1999). We calcu-
late PRs for the probability of exceeding daily, 5-day and 
monthly one-in-ten-year (0.027% chance of occurrence; 
also expressed as a 1 in 365 × 10 chance of occurrence) hot 
and cold temperature extremes, and one-in-one-year (0.27% 
chance of occurrence) wet extremes. However, we exclude 
one-in-ten-year rainfall extremes, because over many 
regions, they are too extreme to be accurately sampled in 
the NAT scenario, particularly for monthly extremes as the 
averaging across time increases the signal (anthropogenic) 
to noise (natural variability) ratio. 5-day and monthly 
weather are calculated by averaging daily output with 5-day 
and 30-day running windows with a 1-day step. This proce-
dure simply smooths the distributions and will not system-
atically increase or decrease exceedance probabilities.

We select wet and cold event thresholds from ensem-
bles driven by the ALL scenario. However since one-in-
ten-year hot extremes simulated under the ALL scenario 
rarely occur in weather simulated under the NAT scenario, 

Fig. 1   (continued)
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we select these thresholds from the NAT ensembles. There-
fore, for hot extremes, PNAT is fixed at 0.027%, and PALL 
varies according to the chance of exceeding the thresh-
olds obtained from the NAT ensembles. For cold and wet 
extremes, PALL is fixed at 0.027 and 0.27% respectively, and 
PNAT varies according to the probability of events being 
colder or wetter than the thresholds derived from the ALL 
ensembles. When the desired percentile lies between two 
data points, the value is estimated via linear interpolation.

We use this method to calculate PRs for extremes occur-
ring over almost all land regions of the globe, at 7 differ-
ent spatial scales (Fig.  1)—the largest being demarcated 
by the 58 regions in the Weather Risk Attribution Forecast 
(WRAF, Fig. 1a), and the smallest being the resolution of 
HadAM3P-N96 (not shown). These regions are on aver-
age 2.18 × 106 km2 with a standard deviation of 4.64 × 105 
km2. We define the second largest spatial scale (“1

2
 WRAF”; 

Fig. 1b) by halving the area of each of the WRAF regions. 
The axis (latitudinal or longitudinal) along which regions 
are split is always perpendicular to the axis with the greater 
maximum latitudinal or longitudinal distance. After a 
region has been split, the areas of the two halves are equal, 
with accuracy being to the nearest grid cell. For the 3rd 
spatial scale (“1

4
 WRAF”; Fig.  1c), we halve the areas of 

the “1
2
 WRAF” regions. We continue to halve regions until 

the 6th spatial scale (“ 1

32
 WRAF”) has been defined. The 

average area of the regions from the WRAF scale to the 
6th spatial scale are: 2.18 × 106; 1.09 × 106; 5.44 × 105; 
2.72 × 105; 1.36 × 105; and 6.81 × 104 km2. The 7th and 
smallest spatial scale is defined as the resolution of the 
coarsest model being HadAM3P-N96. For the 1st to 6th 
spatial scales, area-weighted averages are taken from the 
temperature and rainfall grid cell values at every time-step.

To prevent positive and negative infinity log(PR) val-
ues interfering with the calculations, we have artificially 
adjusted all cases where either PALL or PNAT = 0% to a 
probability assuming one-tenth of an event (day, 5-day or 
month) exceeded (or fell below for cold events) the thresh-
old. Depending precisely on the temporal scale examined, 
this for example equates to an exceedance probability of 
∼0.000055% (0.1 in 5 × 100 years) in CAM5.1 (the prob-
ability will be slightly greater for other models given the 
number of runs is less). These cases occur over a negligible 
percentage of the regions, and are therefore hardly expected 
to effect the results.

4 � Results

PRs have been computed for hot, cold, and wet extremes; 
occurring at 3 temporal scales; 7 spatial scales; over 58 
regions of the world; using output from 4 AGCMs. Before 
we discuss summarised results for all models, variables, 

spatial and temporal scales, we begin with Fig.  2, which 
highlights a key contribution this analyses makes beyond 
Angélil et  al. (2014b). The figure summarises the PR for 
hot day extremes in CAM5.1 for tropical regions (y-axis; 
being the average PR for all regions occurring within the 
tropics at a given spatial scale) as a function of the spatial 
scale of the extreme (x-axis). Linear interpolation for scal-
ing PRs had the Angélil et al. (2014b) method been applied 
(dashed line), fails to characterise the non-linear relation-
ship seen when 7 spatial scales are used (pink markers). 
An interpolated attribution statement can differ by approxi-
mately 20% for a given spatial scale where the vertical dis-
tance between the two lines is greatest.

Next, we present the main results: PRs for temperature 
extremes averaged separately over the tropics and extra-
tropics, and PRs for rainfall extremes averaged across 
each of the 58 WRAF regions. The reason for summaris-
ing the results for temperature and rainfall in such a way 
is that PRs for temperature extremes exhibit similar val-
ues across bands of latitude, while PRs for extreme rain-
fall tend to vary more across smaller spatial scales (Angélil 
et al. 2014a, b). Results calculated for every variable over 
each spatial and temporal scale (without averaging across 
the tropics, extra-tropics, or the WRAF regions), can be 
found in the Supplementary Material as scatter plots (Figs. 
S2–S10) and as maps (Figs. S11–S13).

The pink curve in Fig. 2 is again shown in Fig. 3a. Here 
however, the axes are logarithmic (log10 on the y-axis and 
log2 on the x-axis) so the six curves (tropics and extra-trop-
ics for each of the temporal scales) can be visualised more 
comfortably within each panel. Given the log-log axes, the 

Fig. 2   One-in-ten-year hot day PRs from CAM5.1 as a function of 
spatial scale. Each of the seven pink markers is the arithmetic mean 
of PRs for all regions within the tropics, occurring at a given spatial 
scale. The dashed line represents the relationship had two spatial 
scales been used, as was performed in Angélil et al. (2014b)
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relationships are linear, offering a straightforward way to 
interpolate PRs for events occurring at different spatial 
scales. Regions are defined as falling within the tropics if 
more than half of the grid cells of which they are comprised 
fall between 23.5◦N and 23.5◦S. As expected, PRs in Fig. 3 
are above Unity (the dashed horizontal line) for hot events 
and below Unity for cold events. The PRs for hot extremes 
over the tropics (denoted as ‘T’) are greater in CAM5.1 and 

HadGEM3-A-N216 than MIROC5 by a factor of roughly 5. 
PRs for cold extremes are more similar between AGCMs, 
decreasing slightly from HadGEM3-A-N216 to MIROC5 
to CAM5.1 and HadAM3P-N96. Because estimates at each 
scale are based on the same data, confidence intervals on 
the actual PR value would not provide an accurate indica-
tion of confidence intervals on the difference in values 
between different spatial scales; the difference in values 

Fig. 3   PRs for one-in-ten-year hot (top panels) and cold (bottom 
panels) extremes, calculated from CAM5.1, MIROC5, HadGEM3-A-
N216, and HadAM3P-N96 output. Each marker represents the arith-
metic mean of PRs calculated over either tropical (T) or extra-tropical 

(ET) regions, for one-in-ten-year hot and cold extremes occurring at 
a specified spatial and temporal domain. The dashed black line repre-
sents a PR of Unity
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will depend very strongly on the correlation in variability 
between scales. For this reason, we do not plot confidence 
intervals because they would be misleading.

We see a clear division between PRs over tropical 
and extra-tropical regions when attributing hot extremes 
(Fig.  3a–d). This characteristic can be explained by the 
fact that temperature variability generally decreases with 
decreasing latitude: as distance from the equator decreases, 
the anthropogenic signal tends to emerge more clearly from 
the noise of natural variability, resulting in a PR tending 

away from Unity (Angélil et  al. 2014b; Harrington et  al. 
2016). This concept is additionally relevant when values 
are averaged across space or time, as we are essentially 
smoothing the noise of natural variability. Thus, in all six 
panels, PRs tend away from Unity as the spatial or temporal 
scales of the events increase. The PR is found to have a log-
log relationship with spatial scale here.

Although PRs for temperature typically exhibit a smooth 
transition from weak (a near-unity PR) to strong as distance 
from the equator decreases, PRs can vary significantly 

Fig. 3   (continued)
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within WRAF regions—in Figs. S2–7 and S11–12 we see 
larger spread between PRs which occur at small spatial 
scales. This suggests that the WRAF regions may have a 
North-South spatial extent large enough (not excluding 
other possible factors contributing to PRs) to result in a 
range of PRs—a consequence of noise/seasonality being 
highly sensitive to distance from the equator. PRs vary less 
across WRAF regions close to the equator (e.g. red markers 
for Africa) than those in the extra-tropics, as the change of 
temperature variability as a function of latitude is low near 
the equator (see Fig. 4c).

 Angélil et  al. (2016) evaluate the shapes of extreme 
rainfall and temperature tails in three of the models used 
in this analyses (CAM5.1, MIROC5, and HadGEM3-
N-216). Their results suggest there is substantial tail bias 
mostly in favour of overly strong attribution statements for 
one-in-ten-year hot and cold daily extremes, because the 
simulated tails tend to be shorter than those in reanalyses 
products, thereby increasing the anthropogenic signal to the 
noise of natural variability. The exception being attribution 
statements for hot extremes over North America and parts 
of Asia, which were found to be biased in favour of being 
overly weak (Angélil et  al. 2016). Extremes in all of the 
current generation reanalyses used in Angélil et al. (2016) 
except for ECMWF Interim Reanalysis [ERA-Interim; 
Dee et  al. (2011)] have not yet been thoroughly evalu-
ated against observations. Extremes in ERA-Interim were 

briefly evaluated against gridded observations over Aus-
tralia in Angélil et al. (2016) and thoroughly in Donat et al. 
(2014). Of all reanalyses evaluated in Donat et al. (2014), 
ERA-Interim performed best and was therefore a reason to 
use it in Angélil et al. (2016).

The difference between PRs for hot extremes over the 
tropics and extra-tropics vary depending on the AGCM. 
The difference is smallest in MIROC5 where PRs over the 
extra-tropics and tropics are roughly a factor of 4 apart. The 
gap is larger in HadAM3P-N96 and even larger in CAM5.1 
and HadGEM3-A-N216, being roughly an order of mag-
nitude. The inter-model differences are mostly a result of 
inter-model variations of PRs over the tropics. We further 
explore reasons for these difference in Fig. 4 by separating 
internal variability in the AGCMs from mean temperature 
response to forcings. In both panels statistics are calcu-
lated using the pooled runs from each AGCM. Panels (a) 
and (b) show the difference of zonal mean (land only) tem-
perature between both scenarios (ALL minus NAT) in each 
AGCM. Panel (a) shows the raw differences, while in panel 
(b) we divide by the difference in the global mean tem-
perature between both scenarios (ALL minus NAT), which 
allows us to visualise the sensitivity of mean temperature to 
anthropogenic forcing at every latitude per degree Kelvin 
of global warming. In panel (c), curves of the zonal mean 
standard deviations calculated at the grid-point level with 
daily data, are plotted for both scenarios in each AGCM.

Fig. 4   Zonal mean of land-only temperature (a, b) and land-only 
standard deviation (c), across all time-steps in all ensemble mem-
bers in each AGCM. Zonal means in the panel (b) have been divided 

by the global mean temperature difference (all minus Nat) in each 
model, to highlight changes per degree Kelvin warming
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Panels (a) and (b) suggest that temperature differ-
ences are largest at the poles [particularly the north pole 
in agreement with Stott and Jones (2009)], a phenomenon 
known as polar amplification. The raw differences [panel 
(a)] over the tropics are lowest in MIROC5 and similar 
in CAM5.1, HadGEM3-A-N216, and HadAM3P-N96, 
which corresponds to the PRs for hot extremes in Fig.  3. 
Although the sensitivities of tropical temperature to a 

degree of global warming in CAM5.1 and HadAM3P-N96 
are similar to that of MIROC5 [panel (b)], CAM5.1 and 
HadAM3P-N96 result in PRs more similar to HadGEM3-
A-N216 since their global mean temperature differences 
are ∼0.35K greater than that of MIROC5 and HadGEM3-
A-N216. Panel (c) suggests that anthropogenic influences 
on our climate have reduced temperature variability at the 
poles, but have hardly caused change in variability over the 

Fig. 5   One-in-one-year wet day (first row), 5-day (second row), and 
month (third row) PRs, from CAM5.1, MIROC5, HadGEM3-A-N16, 
HadAM3P-N96. Each marker represents the PR for extremes occur-
ring at one of seven different spatial scales, averaged at the WRAF 
scale. Each line represents a different WRAF region. The dashed 
black line represents a PR of Unity. The red curve in the red box 

in panel (c) is examined in more detail in Fig.  6. The colours rep-
resent distance from the equator, being the absolute value of arith-
metic mean of the latitude of every gridcell within a WRAF region. 
Regions near the equator are magenta, and those furthest from it are 
cyan

Author's personal copy



	 O. Angélil et al.

1 3

tropics between AGCMs or scenarios. Internal variability is 
therefore not responsible for the differences in PRs between 
AGCMs over the tropics in Fig. 3.

There is little reason to average PRs for one-in-one-
year rainfall extremes over spatial domains larger than 
the WRAF scale, because although PRs for rainfall do 
vary geographically, we do not see a systematic differ-
ence between PRs over the tropics and over the extra-trop-
ics (see Figs  S8–10 and S13) like we do for temperature 
extremes. In Fig.  5, for PRs calculated over each of the 
7 spatial scales, we average results across each of the 58 
WRAF regions—each line representing a different WRAF 
region. In other words, for one curve, no averaging has 
been applied to the first marker as the event occurs at the 
WRAF scale. The value for the second marker is the arith-
metic mean of two values as there are two regions within 
each WRAF region, each occurring at the 1

2
 WRAF scale. 

Only results from CAM5.1 are shown here (see Fig. S1 for 
results from all models). To avoid a saturated figure, we 
separate PRs for daily, 5-day and monthly extremes into 
individual panels. The colours represent distance from the 
equator, being the absolute value of arithmetic mean of the 
latitude of every gridcell within a WRAF region. Regions 
near the equator are magenta, and those furthest from it are 
cyan.

As in Fig. 3, PRs tend away from Unity as spatial and 
temporal scale increases. Regions furthest from the equa-
tor tend to be the regions with PRs closest to Unity, while 
regions closest to the equator have higher and lower PRs. 
Similar results are seen in the other 3 models (Fig. S1).

Averaging PRs within the spatial domain of a WRAF 
region, as done in Fig.  5, can result in a loss of useful 
information. PRs for rainfall can be very sensitive to small 
scale changes in location—for example neighbouring grid 
cells can have strikingly different attribution statements as 
shown in Angélil et  al. (2014a), as rainfall extremes can 
be very localised. Angélil et  al. (2014a) use a bootstrap 
sampling procedure to show that the difference was not a 
consequence of noise due to sampling, but rather a dynami-
cal response native to the model. However since models 
resolve the dynamics at the grid cell scales poorly, PRs for 
rainfall over individual grid cells are unlikely to be reliable.

Fig.  6 highlights the evolution of the PR and uncer-
tainty around it due to internal variability as the spatial 
scale changes. The spread of PRs within one WRAF region 
(northwestern United States; the red curve in the red box 
in Fig. 5c) is shown. Here best estimate PRs from CAM5.1 
are shown for wet extremes lasting a month occurring over 
the whole region and within the region. This is a region 
of particular interest as PRs are split between being above 
and below Unity. PRs shown are those before averaging, 
as in Figs.  S2–13. The spread of the raw PRs at the grid 
cell scale is ∼0.4 to ∼2.5, however when an average is taken 
across the WRAF scale for events occurring at each of the 
7 spatial scales, PRs lie between ∼0.9 and ∼1.3 (red curve 
in the red box in Fig. 5c).

Uncertainty due to internal variability on the best esti-
mate (BE) of the PRs are described by their colours, and 
calculated by generating 10,000 bootstrap datasets of the 
ALL and NAT realisations. Simulations are shuffled, not 
days, in order to preserve sequencing information. For 
each dataset the corresponding PR is calculated (on the log 
scale) per the procedures discussed in the Methods sec-
tion. This gives a sample of 10,000 PR values that char-
acterise the sampling distribution of the PR estimate. To 
quantify uncertainty in the estimated PR, we used the basic 
bootstrap confidence interval procedure (not to be con-
fused with the percentile bootstrap confidence interval), 
by which lower and upper uncertainty bars are calculated 
by BE − (E95 − BE) and BE − (E05 − BE) respectively, 
where E95 and E05 represent the 95th and 5th percentiles 
of the 10,000 bootstrapped PR values (Davison and Hin-
kley 1997; Davison and Huser 2015). With ensemble sizes 
of 50–100 simulations per scenario, this bootstrap estimate 
should provide a decent approximation of the uncertain-
ties in the probabilities of exceedance; however, for the 
15-member ensembles of HadGEM3-A-N216 this will be 
a rather poorer estimator. The legend depicts the range of 
uncertainty for each coloured marker. Uncertainty due to 
internal variability on average increases with decreasing 
spatial scale and the higher the PR is – the latter being a 
sign of the extreme threshold being further out into the tail 
(Fischer and Knutti 2015).

Fig. 6   PRs for wet months in CAM5.1 for the red curve in the red 
box in Fig.  5c, before averaging over space. The WRAF region is 
Northwestern United States. The dashed black line represents a PR 
of Unity. The markers can be one of 5 colours, denoting a range of 
uncertainty due to internal variability around the best estimate. The 
uncertainty range for each colour appears in the legend, and has been 
calculated using a Monte Carlo sampling procedure
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Results shown in Figs. 5 and 6 suggest the PR may be 
sensitive enough to small changes in the exact location 
of the defined extreme and its spatial scale, to, for exam-
ple, change the attribution statement from being ‘positive’ 
(roughly that anthropogenic influence increased the chance 
of the event) or ‘negative’ (roughly that anthropogenic 
influence decreased the chance of the event), or vice versa. 
Although there is currently no strict definition of a ‘posi-
tive’ or ‘negative’ attribution statement (National Acad-
emies of Sciences 2016), studies should properly justify 
their choice of spatial scale and location for extreme rain-
fall events.

Relationships between attribution statements for sequen-
tial pairs of spatial scales are identified to gauge the reli-
ability of the scaling. We regress 58 PRs (one for each 
WRAF region, each value being the average of PRs across 
that WRAF region) against 58 PRs for events occurring at 
one larger or smaller spatial scale. Figure  7 demonstrates 
this for 5-day wet extremes in MIROC5. We regress PRs 
for extremes occurring at the 1

2
 WRAF scale against those 

occurring at the 1
4
 WRAF scale. The correlation coefficient 

of 0.93 denotes a strong relationship, and the gradient of 
less than one (0.73) indicates that PRs on average tend 
away from Unity as spatial scale increases. The advantage 
of this method is that the sensitivity of PRs to spatial scale 
is based on sensitivity within all of the WRAF regions. 
This means that the resulting regression is also helpful to 
scale attribution statements for extremes occurring within 
regions where the average PR across the region is not very 
sensitive to the spatial scale (Fig. 7).

Correlation coefficients for all combinations of: the 
AGCM; pairs of spatial scales; temporal scale of the event; 
and event type, are plotted in Fig.  8, and coefficients to 
two decimal places can be found in Table  S1. All but a 
few correlation coefficients for hot and cold extremes lie 
between 0.95 and 1. For wet extremes the coefficients lie 
between 0.75 and 1. The higher the correlation coefficient, 
the more reliable the scaling. The high coefficients between 
the smallest spatial scales may be artefacts of the experi-
mental setup. Because the effective dynamical resolution 
of a climate model is greater than the resolution it is run 
at, the variability near and at the grid scale is expected to 
be under-represented. Reduced variability (noise) increases 
the strength of the attribution statement (the anthropogenic 
signal), resulting in higher correlation coefficients with 
statements for events occurring at slightly larger spatial 
scales, where this artefact is not as prominent and noise 
is rather reduced through averaging over space. Caution 
should therefore be taken when scaling events at near-grid 
cell spatial scales. Scaling can be performed with the gradi-
ents and y-intercepts (for all regressions) found in Table S2.

For example, a PR of 10 (whether it be a statement 
already published or not) for a 5-day heatwave occurring 
over the 1

2
 WRAF scale can be scaled to one occurring 

over the 1
4
 WRAF scale using the following relationship 

found in CAM5.1: y = 0.95x + 0.01. A PR of 9.51 results 
when x = 10. Given the relationships found in MIROC5, 
HadGEM3-A-N216, and HadAM3P-N96; PRs of 9.59, 
9.18, and 9.07 result respectively.

5 � Discussion

This study characterises functions representing the rela-
tion between the spatial scale of the extreme and its attri-
bution statement. Although global mean temperature dif-
ferences between the NAT and ALL scenarios are ∼0.35◦

K greater in CAM5.1 and HadAM3P-N96 than MIROC5 
and HadGEM3-A-N216, zonal mean land temperature 
difference in the AGCMs hardly correspond to the global 
response. The response is also highly sensitive to latitude. 
For example, HadGEM3-A-N216 has a higher tempera-
ture sensitivity over the tropics per degree global warm-
ing than CAM5.1, MIROC5 and HadAM3P-N96, result-
ing in comparable attribution statements with CAM5.1 and 
HadAM3P-N96 for extremes occurring over this region. In 
essence, it appears that zonal mean absolute temperature 
differences correspond closely to attribution statements for 
temperature extremes, suggesting mean temperature is a 
low order proxy for extreme temperature in agreement with 
Seneviratne et al. (2012). Given the sensitivity of results to 
the model used, we stress the importance of model evalua-
tion in event attribution studies.

Fig. 7   Regressions between PRs derived at “1
2
 WRAF” and “1

4
 

WRAF” scales over each of the 58 WRAF regions, for one-in-one-
year 5-day wet extremes. The position of each marker is determined 
by the average of four PRs in a WRAF region (y-value) and the aver-
age of two PRs in the same WRAF region (x-value). Data used are 
from MIROC5
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PRs for hot extremes over the extra-tropics were found 
to lie anywhere between ∼5 and ∼30 depending on the 
spatial and temporal scale of the event, and the AGCM 
used – the highest from HadGEM3-A-N216 and the low-
est from MIROC5. PRs for hot extremes over the trop-
ics were anywhere between ∼12 and ∼250, the highest 
PRs coming from both CAM5.1 and HadGEM3-A-N216. 
For cold extremes, PRs ranged between ∼0.05 and ∼0.2 
over the extra-tropics and between ∼0.008 and ∼0.15 
over the tropics. For the PRs over individual regions 

within the extra-tropics or tropics, see Figs. S11 & S12. 
In general, PRs for temperature extremes are less sensi-
tive to variations in the spatial scales of the events than 
to the AGCM used. PRs for wet events may be similarly 
sensitive to the AGCM used as to slight changes in the 
spatial scales (see Figs S8–10 and S13), but further sta-
tistical analyses would be required to test this robustly. 
Although, it is clear that model responses to anthropo-
genic forcings do not impact PRs for rainfall as directly 
as it impacts PRs for temperature, which may be due 

Fig. 8   Correlation coefficients between pairs of spatial domains, for 
day, 5-day, and month-long hot (a), cold (b), and wet (c) events, from 
CAM5.1, MIROC5, HadGEM3-A-N216, and HadAM3P-N96. For 

explanatory purposes, the marker encircled in red is the correlation 
coefficient from Fig. 7
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to limited moisture availability over land. Statements 
do however vary largely between AGCMs in terms of 
whether they are positive (PR > 1) or negative (PR < 1), 
as shown in Figs.  S8–10 and S13. On average, PRs for 
wet events are greater than Unity but only marginally, in 
agreement with Pall et al. (2011); Peterson et al. (2013); 
Herring et al. (2014, 2015); Fischer and Knutti (2015). In 
this study we only look at one-in-one year wet extremes. 
Studies have shown that PRs increase as the anomaly of 
the wet extreme increases (Angélil et  al. 2014a; Fischer 
and Knutti 2015), owing to the Clausius-Clapeyron rela-
tion – a relation most pertinent to short-lived extreme 
rainfall (Allen and Ingram 2002; Christensen and Chris-
tensen 2003; Pall et  al. 2007; Jones et  al. 2010; Westra 
et  al. 2014), influencing the limit on the most extreme 
wet event possible as a function of temperature. Warming 
raises this limit.

Results shown in Figs.  3 and 5 clearly show a non-
linear relationship between the PR and the spatial scale. 
The correlation coefficients between PRs for temperature 
extremes occurring at different spatial scales are almost 
all greater than 0.95 (3 are between 0.9 and 0.95). For 
rainfall extremes the correlations are all greater than 
0.75, although most are greater than 0.9. Such results 
should encourage the scaling of attribution statements to 
provide real-time statements for new extremes occurring 
at different spatial domains. Since PRs between models 
can vary substantially, there is future work to be done in 
order to reduce this uncertainty. However since the sensi-
tivity of the PR as a function of the spatial scale is simi-
lar between models, scaling could still be performed in 
the future as model uncertainty is reduced. Furthermore, 
because real extremes do not have clear-cut physical bor-
ders, it is important to understand how attribution results 
scale as a consequence of uncertainty around the event 
definition.

In some cases such as the region examined in Fig.  6, 
PRs tend to be close and on both sides of Unity – in close 
proximity to thresholds which could categorise an attribu-
tion statement as either ‘positive’, ‘neutral’ or ‘negative’. 
Although no such definitions have yet been established, 
failure to thoroughly justify the spatial scale and location 
of an event can result in biased attribution statements, pos-
sibly leading to a change in the sign of the statement.
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